Skip to main content

Process tomography

The first research work under the supervision of Prof. Dominik Sankowski in the field of process tomography systems development dates back to 2000 and concerned primarily the design of acquisition algorithms, processing and analysis of tomographic data. The developed solutions are used for the automatic control of industrial processes in order to optimize them, improving the quality of the final product. Currently, the group, internally named TomoKIS, focuses its research on:

  • Development of algorithms for reconstruction of 2D and 3D tomographic images,
  • Development of algorithms for processing and analyzing tomographic data,
  • Development of communication methods in industrial systems, taking into account the "Industry 4.0" standards, including IoT and BigData,
  • Numerical modeling and construction of ECT measuring sensors,
  • Development of modern methods for controlling industrial processes, taking into account vision data, artificial intelligence, including neural networks, fuzzy logic and machine learning [1,2]

The developed solutions are verified in the Tomasz Dyakowski Process Tomography Laboratory (link do laboratorium) located in the buildings of the Institute of Applied Informatics of the Lodz University of Technology. The laboratory is equipped with several semi-industrial installations, including those dedicated to controlling the two-phase flow of liquid-gas mixtures, pneumatic flow, gravitational flow of bulk materials [3,4][**], separation process [***,$] and crystallization batch [***,$].

obraz perspektywiczny który pokazuje cztery rure pożiomowe
grafika instalacje silosowe oraz transportu pneumatycznego

Research is also conducted in extensive cooperation with scientists from leading units of European universities, thanks to which it is possible to exchange experiences and dynamic development of the field of IT in the field of monitoring and control of industrial systems. Thanks to numerous scientific internships and the possibility of using laboratories of friendly universities, it has also become possible to develop research works in the field of processing tomographic images from, among others, from X-ray and gamma-ray tomography systems. Selected Flow Controls:

  • granular/bulk materials,
  • two-phase liquid-gas mixtures
Treść (rozbudowana)
Gravitational flow of bulk materials

The main stages of operation of an exemplary process tomography system dedicated to monitoring the gravitational flow of bulk materials are [3,4][**]:

  • step 1: construction of silos
  • step 2: development of applications for designing ECT sensors based on electric field analysis and for optimizing the strength of measurement channels
  • step 3: preparing a set of measuring sensors
  • step 4: developing an application for processing and analyzing tomographic measurements
ilustracja kroków badania przepływu grawitacyjnego materiałów sypkich wykorzystając tomografii pojemnościowej

The process of analyzing tomographic data supported by the action of a wide group of people carrying out the task set before them - crowdsourcing [5] or big-data [6] is also applied.

diagram blokowy który pokazuje kroki metody crowdsourcing

Study of the flow of bulk materials in asymmetric silos - ECT tomography [7] and X-ray tomography [8].

Pomiary ECT silosu asimytrycznego
Widok pomiarów przepływu asimytrycznego w tomografii X

 

0
two-phase flow of liquid-gas mixtures

Intelligent control of the flow process using 3DECT diagnostics and fuzzy logic ($$) [1]

interfejs programu który pokazuje rekonstruowany obraz przepływu

Design of embedding control of gas-liquid separation using smart tomography (***)[8,9]

0
Selected articles

[1] P. Fiderek, et al. Flow Meas. Instrum., 2017. 54: 88-96. DOI link

[2] H. Garbaa et al. Arch. Elec. Eng., 2016. 65: 657-669. DOI link

[3] G. Rybak et al. Flow Meas. Instrum, 2018. 62: 167-175. DOI link

[4] K. Grudzień. IEEE Sensors, 2017. 17: 8242 - 8250. DOI link

[5] C. Chen et al. ACM T. Intel. Sys. Tec., 2016. 7: 52. DOI link

[6] A. Romanowski. IEEE Trans Ind. Informat., 2019. 15: 1609-1618. DOI link

[7] K. Grudzień et al. Flow Meas. Instrum,, 2018. 62: 186-195. DOI link

[8] L. Babout et al. Compag. 2020. 172: 105346. DOI link

[9] B. Sahovic et al. Chemie Ingenieur Technik, 2020. 92: 554-563. https://doi.org/10.1002/cite.201900172

[10] M.A. Sattar et al. Sensors, 2020. 20: 6069. https://doi.org/10.3390/s20216069

[11] G. Rao et al. Sensors, 2021. 21: 564. https://doi.org/10.3390/s21020564

0
Selected projects

(*) FP6 ToK DENIDIA. D. Sankowski, L. Babout (coordinator). 2006-2010

(**) MNiWS (3687/B/T02/2009/37). K. Grudzień, Z. Chaniecki, A. Romanowski. 2009-2012.

(***) H2020 MSCA ITN TOMOCON. U. Hampel (coordinator), L. Babout (TUL coordinator). 2017-2021

($) NCBiR PLATOM. D. Sankowski (coordinator). Netrix S.A. 2018-2021.

($$) NCN Sonata (2011/01/D/ST6/07209). R. Wajman. R. Banasiak, J. Kucharski. 2011-2014

0